Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Microb Biotechnol ; 15(10): 2619-2630, 2022 10.
Article in English | MEDLINE | ID: covidwho-1927540

ABSTRACT

Reverse transcription (RT) - loop-mediated isothermal amplification (LAMP) assay is a rapid and one-step method to detect SARS-CoV-2 in the pandemic. Quantitative estimation of the viral load of SARS-CoV-2 in patient samples could help physicians make decisions on clinical treatment and patient management. Here, we propose to use a quantitative LAMP (qLAMP) method to evaluate the viral load of SARS-CoV-2 in samples. We used threshold time (TT) values of qLAMP, the isothermal incubation time required for the fluorescent or colorimetric signal to reach the threshold, to indicate the viral load of clinical samples. Similar to the cycle threshold (Ct ) values in conventional qPCR, TT values of qLAMP show a linear relationship to the copy numbers of SARS-CoV-2. The higher the viral loadings, the lower qLAMP TT values are. The RT-qLAMP assay was demonstrated to quantify the viral loads of synthesized full-length RNA, inactivated viral particles (BBIBP-CorV), and clinical samples within 15 min by fluorescent reading and 25 min by colorimetric reading. The RT-qLAMP has been applied to detect Alpha, Beta, Kappa, Delta, and Omicron variants of SARS-CoV-2, as well as the human beta-actin gene, and their TT values showed the linear patterns. The RT-qLAMP assays were evaluated by 64 clinical samples (25 positives and 39 negatives) for the assessment of viral loads, and it was also used to quantify the human beta-actin gene, which was used as a control and an indicator of sampling quality in clinical swab samples. The result of RT-qLAMP was in good agreement with the result of RT-qPCR. The RT-qLAMP assay detected all clinical samples, including those with Ct  = 35, within 10 min using fluorescent reading.


Subject(s)
COVID-19 , SARS-CoV-2 , Actins/genetics , COVID-19/diagnosis , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques , RNA , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
2.
Microbiol Spectr ; 9(2): e0073621, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1476398

ABSTRACT

The supply of testing equipment is vital in controlling the spread of SARS-CoV-2. We compared the diagnostic efficacy and tolerability of molded plastic (FinSwab; Valukumpu, Finland) versus flocked nylon (FLOQSwab; Copan, Italy) nasopharyngeal swabs in a clinical setting. Adults (n = 112) with suspected symptomatic COVID-19 infection underwent nasopharyngeal sampling with FinSwab and FLOQSwab from the same nostril at a drive-in coronavirus testing station. In a subset of 36 patients the samples were collected in a randomized order to evaluate the discomfort associated with sampling. SARS-CoV-2 and 16 other respiratory viruses, as well as human ß-actin mRNA were analyzed by using reverse transcriptase PCR (RT-PCR) assays. Among the 112 patients (mean age, 38 [standard deviation (SD), 14] years) ß-actin mRNA was found in all samples. There was no difference in the ß-actin mRNA cycle threshold (CT) values between FinSwab (mean, 22.3; SD, 3.61) and FLOQSwab (mean, 22.1; SD, 3.50; P = 0.46) swabs. There were 31 virus-positive cases (26 rhinovirus, 4 SARS-CoV-2, and 1 coronavirus-OC43), 24 of which were positive in both swabs; 3 rhinovirus positives were only found in the FinSwab, and similarly 4 rhinovirus positives were only found in the FLOQSwab. Rhinovirus CT values were similar between swab types. Of the 36 patients, 22 (61%) tolerated the sampling with the FinSwab better than with the FLOQSwab (P = 0.065). The molded plastic nasopharyngeal swab (FinSwab) was comparable to the standard flocked swab in terms of efficacy for respiratory virus detection and tolerability of sampling. IMPORTANCE We demonstrate that a molded plastic swab is a valid alternative to conventional brush-like swabs in collection of a nasopharyngeal sample for virus diagnostics.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Specimen Handling/instrumentation , Actins/genetics , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Plastics , RNA, Messenger/genetics , Respiratory Tract Infections/diagnosis , Rhinovirus/isolation & purification , Specimen Handling/methods , Young Adult
3.
Virology ; 558: 22-27, 2021 06.
Article in English | MEDLINE | ID: covidwho-1122566

ABSTRACT

Cytomegalovirus (CMV) promoter drives various gene expression and yields sufficient protein for further functional investigation. Receptor binding domain (RBD) on spike protein of the SARS_CoV2 is the most critical portal for virus infection. Thus native conformational RBD protein may facilitate biochemical identification of RBD and provide valuable support of drug and vaccine design for curing COVID-19. We attempted to express RBD under CMV promoter in vitro, but failed. RBD-specific mRNA cannot be detected in cell transfected with recombinant plasmids, in which CMV promoter governs the RBD transcription. Additionally, the pCMV-Tag2B-SARS_CoV2_RBD trans-inactivates CMV promoter transcription activity. Alternatively, we identified that both Chicken ß-actin promoter and Vaccinia virus-specific medium/late (M/L) promoter (pSYN) can highly precede SARS_CoV2 RBD expression. Our findings provided evidence that SARS_CoV2 RBD gene can be driven by Chicken ß-actin promoter or Vaccinia virus-specific medium/late promoter instead of CMV promoter, thus providing valuable information for RBD feature exploration.


Subject(s)
COVID-19/virology , Cytomegalovirus/genetics , Promoter Regions, Genetic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Actins/genetics , Animals , CHO Cells , Chickens , Chlorocebus aethiops , Cloning, Molecular , Cricetulus , HEK293 Cells , Humans , Protein Domains , Transcription, Genetic , Vaccinia/genetics , Vero Cells
4.
Transbound Emerg Dis ; 67(6): 2446-2454, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-71842

ABSTRACT

Real-time PCR assays are highly sensitive, specific and rapid techniques for the identification of ASF virus (ASFV) (Section 3.8, OIE Terrestrial Manual, 2019). Although an ASFV p72 gene-based real-time PCR assay (a.k.a. the Zsak assay) (Journal of Clinical Microbiology, 2005, 43, 112) has been widely used for ASFV detection, several more ASFV whole genome sequences have become available in the 15 years since the design of the Zsak assay. In this study, we developed a new ASFV p72 gene-based real-time PCR after analysis of all currently available sequences of the p72 gene and multiplexed the new assay with a modified Zsak assay aiming to have a broader coverage of ASFV strain/isolates. To reduce false-negative detections, porcine house-keeping gene, beta actin (ACTB), was applied as an internal control. Eight ACTB sequences from the GenBank and 61 partial ACTB sequences generated in this study, and 1,012 p72 sequences from the GenBank and 23 p72 sequences generated at FADDL, were used for ACTB and ASFV primer and probe designs, respectively, to ensure broader host and ASFV coverage. Multiplexing ACTB in the reaction did not affect ASFV amplification. The multiplex assay was evaluated for strain/isolate coverage, sensitivity and specificity. The in silico analysis showed high ASFV strain/isolate coverage: 98.4% (978/994) of all p72 sequences currently available. The limit of detection (LOD) was 6 plasmid copies or 0.1-1 TCID50 /ml of ASFV isolates per reaction. Only targeted ASFV isolates and the viruses in the positive clinical samples were detected, indicating that the assay is highly specific (100% specificity). The test results of 26 ASFV isolates with different country origins showed that this newly developed multiplex assay performed better than the Zsak assay that has been widely accepted and used worldwide, indicating that it may be used as an alternative assay for ASFV detection.


Subject(s)
African Swine Fever Virus/isolation & purification , African Swine Fever/diagnosis , African Swine Fever/virology , Multiplex Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods , Actins/genetics , African Swine Fever Virus/genetics , Animals , DNA Primers , DNA Probes , DNA, Viral/genetics , Sensitivity and Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL